
Computer Science Department

Python Programming Lecture 1

Introduction

1.1 Python language:

 Python is one of the most popular and widely used programming languages, and

is an excellent language for new programmers to start with. They can be used in

everything from video games and language processing, to data analysis and

machine learning. It was created by Guido van Rossum, and released in 1991.

Python is a high-level, compiled, interactive, and object-oriented programming

language. It is highly readable, as it uses simple English words, unlike other

languages that use symbols, and its spelling and syntax are simple, which makes

learning Python easy compared to other programming languages.

هي واحذة هي أشهر لغاث البرهجت وأكثرها استخذاهًا، وهي لغت هوتازة ليبذأ بها الوبرهجىى الجذد. يوكي -بايثىى*

 ل الوجالاث، بذءًا هي ألعاب الفيذيى وهعالجت اللغاث، وحتً تحليل البياًاث والتعلن الآلي.استخذاهها في ك

(وتفاعليت وكائٌيت. وتتوتع بوقروئيت عاليت، إر تستخذم interpretedبايثىى هي لغت برهجت عاليت الوستىي، وهُترجوت)

الرهىز، كوا أىّ قىاعذها الإهلائيت والصياغيت بسيطت، ها كلواث إًجليسيت بسيطت، علً خلاف اللغاث الأخري التي تستخذم

 يجعل تعلن لغت بايثىى سهلًا هىازًتً بلغاث برهجت أخري.

1.2 Features of Python language:

Python has several advantages over other programming languages, including:

1. Ease of learning: The Python language is easy to learn, as it consists of a few

keywords, and is characterized by a simple and clear syntax.

2. Readability: Python code is clear, organized, and easy to read.

3. Easy to Maintain: Python code is very easy to maintain.

4. Extensive Standard Library: The Python Standard Library contains a large

number of portable packages that are compatible with UNIX, Windows, and

macOS systems.

Computer Science Department

Python Programming Lecture 1

5. Interactive mode: Python supports interactive mode, making it possible to

execute code directly on the command line and debug the code.

6. Python portability: Python can run on a wide range of platforms and devices,

while maintaining the same interface on all of them.

7. Extensibility: One of the most important features of Python is that it has a

huge number of modules that can expand the capabilities of the language in

all areas of development, such as data analysis, 2D and 3D graphics, game

development, embedded systems, scientific research, website development

and other fields.

8. Databases: Python provides interfaces to all major databases.

9. Graphics: Python supports graphical applications.

10. Support for large programs: Python is suitable for large and complex

programs.

1.3 What can Python do?

1. Python can be used on a server to create web applications.

2. Python can be used alongside software to create workflows.

3. Python can connect to database systems. It can also read and modify files.

4. Python can be used to handle big data and perform complex mathematics.

5. Python can be used for rapid prototyping, or for production-ready software

development.

Requirements: You must have Python installed, as well as a local

programming environment set up on your computer. To write a program , we will

create a new file with the extension(.py)

Computer Science Department

Python Programming Lecture 1

1.4 Python Getting Started

1.4.1 Python Install:

لتنصيب اللغة :*

Use this web link:

https://www.python.org/downloads/

1.4.2 Python Output \\ print() function

 Print() دالة الطباعة*

We use the print() function to output data to the standard output device (screen).

We can also output data to a file, but this will be discussed later. It displays or

outputs what we put in parentheses.

An example of its use is given below..

 Print ('Hallow')

 Print (10+20)

 Print ('ahmed','ali')

 Another example is given below:

 d = 20

 print('The value of a is', d)

 Output\\ The value of a is 20

Computer Science Department

Python Programming Lecture 1

1.4.3 String Concatenation:

To concatenate, or combine, two strings you can use the + operator.

Example: Merge variable a with variable b into variable c:

a = "Hello"

b = "World"

c = a + b

print(c)

Output\\ HelloWorld

we can combine strings and numbers by using the format() method.

The format() method takes the passed arguments, formats them, and places them

in the string where the placeholders { } are:

Example: Use the format() method to insert numbers into strings:

age = 36

txt = "My name is John, and I am {}"

print(txt.format(age))

Output\\ My name is John, and I am 36

The format() method takes unlimited number of arguments, and are placed into the

respective placeholders:

Example:

quantity = 3

itemno = 567

price = 49.95

myorder = "I want {} pieces of item {} for {} dollars."

print(myorder.format(quantity, itemno, price))

Output\\ I want 3 pieces of item 567 for 49.95 dollars.

Computer Science Department

Python Programming Lecture 1

1.4.4 Boolean Values:

 In programming you often need to know if an expression is True or False.

You can evaluate any expression in Python, and get one of two

answers, True or False.

When you compare two values, the expression is evaluated and Python returns the

Boolean answer:

Example

print(10 > 9)

print(10 == 9)

print(10 < 9)

output\\True

 False

 False

1.4.5 Python User Input

Python allows for user input.That means we are able to ask the user for input.

The method is a bit different in Python 3.6 than Python 2.7.

Python 3.6 uses the input() method.

Python 2.7 uses the raw_input() method.

The following example asks for the username, and when you entered the username,

it gets printed on the screen:

Python 3.6

username = input("Enter username:")

print("Username is: " + username)

output\\ Enter username: 12345

Username is: 12345

Computer Science Department

Python Programming Lecture 1

1.4.6 Python Comments

 Comments can be used to explain Python code.

 Comments can be used to make the code more readable.

 Comments can be used to prevent execution when testing code.

1- Creating a Comment

Comments starts with a #, and Python will ignore them:

Example

#This is a comment

print("Hello, World!")

Comments can be placed at the end of a line, and Python will ignore the rest of the

line:

Example

 print("Hello, World!") #This is a comment

A comment does not have to be text that explains the code, it can also be used to

prevent Python from executing code:

Example

 #print("Hello, World!")

print("Cheers, Mate!")

Computer Science Department

Python Programming Lecture 1

2- Multi Line Comments

Python does not really have a syntax for multi line comments.

To add a multiline comment you could insert a # for each line:

Example

#This is a comment

#written in

#more than just one line

print("Hello, World!")

Or, not quite as intended, you can use a multiline string.

Since Python will ignore string literals that are not assigned to a variable, you can

add a multiline string (triple quotes) in your code, and place your comment inside

it:

Example

"""

This is a comment

written in

more than just one line

"""

print("Hello, World!")

Computer Science Department

Python Programming Lecture 1

1.4.7 Variables

Variables are containers for storing data values.

Creating Variables

Python has no command for declaring a variable.

A variable is created the moment you first assign a value to it.

Example

x = 5

y = "John"

print(x)

print(y)

Example

x = 4 # x is of type int

x = "Sally" # x is now of type str

print(x)

output\\

1.4.8 Python Casting

Specify a Variable Type.

There may be times when you want to specify a type on to a variable. This can be

done with casting. Python is an object-orientated language, and as such it uses

classes to define data types, including its primitive types.

Casting in python is therefore done using constructor functions:

 int() - constructs an integer number from an integer literal, a float literal (by

removing all decimals), or a string literal (providing the string represents a

whole number)

Computer Science Department

Python Programming Lecture 1

 float() - constructs a float number from an integer literal, a float literal or a

string literal (providing the string represents a float or an integer)

 str() - constructs a string from a wide variety of data types, including

strings, integer literals and float literals If you want to specify the data type

of a variable, this can be done with casting.

Example

x = str(3) # x will be '3'

y = int(3) # y will be 3

z = float(3) # z will be 3.0

Example

x = int(1) # x will be 1

y = int(2.8) # y will be 2

z = int("3") # z will be 3

Example

x = float(1) # x will be 1.0

y = float(2.8) # y will be 2.8

z = float("3") # z will be 3.0

w = float("4.2") # w will be 4.2

1.4.9 Python Data Types

Built-in Data Types

In programming, data type is an important concept. Variables can store data of

different types, and different types can do different things.

Python has the following data types built-in by default, in these categories:

Computer Science Department

Python Programming Lecture 1

Getting the Data Type

You can get the data type of any object by using the type() function:

Example

Print the data type of the variable x:

x = 5

print(type(x))

output\\ <class 'int'>

Setting the Data Type

In Python, the data type is set when you assign a value to a variable:

Example Data Type

x = "Hello World" str

x = 20 int

x = 20.5 float

x = 1j complex

x = ["apple", "banana", "cherry"] list

x = ("apple", "banana", "cherry") tuple

x = range(6) range

Computer Science Department

Python Programming Lecture 1

x = {"name" : "John", "age" : 36} dict

x = {"apple", "banana", "cherry"} set

x = True bool

1.4.10 Python Numbers:

There are three numeric types in Python:

 int

 float

 complex

Variables of numeric types are created when you assign a value to them:

Example

x = 1 # int

y = 2.8 # float

z = 1j # complex

((End of lecture 1))

Computer Science Department

Python Programming Lecture 2

1

2.1 Python Operators:

Operators are used to perform operations on variables and values.

In the example below, we use the + operator to add together two values:

Example

 print(10 + 5)

Python divides the operators in the following groups:

 Arithmetic operators

 Assignment operators

 Comparison operators

 Logical operators

 Identity operators

 Membership operators

 Bitwise operators

2.1.1 Python Arithmetic Operators

Arithmetic operators are used with numeric values to perform common

mathematical operations:

Operator Name Example

+ Addition x + y

Computer Science Department

Python Programming Lecture 2

2

- Subtraction x - y

* Multiplication x * y

/ Division x / y

% Modulus x % y

** Exponentiation x ** y

// Floor division x // y

2.1.2 Python Assignment Operators:

Assignment operators are used to assign values to variables:

Operator Example Same As

= x = 5 x = 5

+= x += 3 x = x + 3

-= x -= 3 x = x - 3

*= x *= 3 x = x * 3

/= x /= 3 x = x / 3

Computer Science Department

Python Programming Lecture 2

3

%= x %= 3 x = x % 3

//= x //= 3 x = x // 3

**= x **= 3 x = x ** 3

&= x &= 3 x = x & 3

|= x |= 3 x = x | 3

^= x ^= 3 x = x ^ 3

>>= x >>= 3 x = x >> 3

<<= x <<= 3 x = x << 3

2.1.3 Python Logical Operators

Logical operators are used to combine conditional statements:

Operator Description Example

and Returns True if both statements are true x < 5 and x < 10

Or Returns True if one of the statements is true x < 5 or x < 4

Not
Reverse the result, returns False if the result is

true
not(x < 5 and x < 10)

Computer Science Department

Python Programming Lecture 2

4

2.1.4 Python Bitwise Operators

Bitwise operators are used to compare (binary) numbers:

Operator Name Description

& AND Sets each bit to 1 if both bits are 1

| OR Sets each bit to 1 if one of two bits is 1

^ XOR Sets each bit to 1 if only one of two bits is 1

~ NOT Inverts all the bits

<<
Zero fill left

shift

Shift left by pushing zeros in from the right and let the leftmost bits

fall off

>>
Signed right

shift

Shift right by pushing copies of the leftmost bit in from the left, and let

the rightmost bits fall off

3 bitwise 2 =

00000011 &00000010 00000010 2

00000011 |00000010 00000011 3

00000011 ^ 00000010 00000001 1

00000011 <<3 00011000 000 24

 اضافه خروج

00000011 >>3 00000000 011 0

Computer Science Department

Python Programming Lecture 2

5

2.1.5 Python Comparison Operators:

Comparison operators are used to compare two values:

2.1.6 Python Identity Operators:

Identity operators are used to compare the objects, not if they are equal, but if

they are actually the same object, with the same memory location:

Operator Name Example

== Equal x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

>= Greater than or equal to x >= y

<= Less than or equal to x <= y

Operator Description Example

is Returns True if both variables are the same object x is y

is not Returns True if both variables are not the same object x is not y

Computer Science Department

Python Programming Lecture 2

6

2.1.7 Python Membership Operators:

Membership operators are used to test if a sequence is presented in an object:

Operator Description Example

in Returns True if a sequence with the specified value is

present in the object

x in y

not in Returns True if a sequence with the specified value is not

present in the object

x not in y

H.W\\ Operator Precedence

Operator precedence describes the order in which operations are performed.

H.W\\

1. print((6 + 3) - (6 + 3))
2. print(100 + 5 * 3)

3. print(5 + 4 - 7 + 3)

4. Multiply 10 with 5, and print the result.

What’s output for all line code above??

Computer Science Department

Python Programming Lecture 2

7

2.2 Python Strings

Strings in python are surrounded by either single quotation marks, or double

quotation marks.

'hello' is the same as "hello".

You can display a string literal with the print() function:

Example

 print("Hello")

 print('Hello')

1- Assign String to a Variable

Assigning a string to a variable is done with the variable name followed by an

equal sign and the string:

Example

a = "Hello"

print(a)

output\\ Hello

2- Multiline Strings

You can assign a multiline string to a variable by using three double quotes Or

three single quotes :

Computer Science Department

Python Programming Lecture 2

8

Example

 a = """ Shift left by pushing zeros in from the right

 and let the leftmost bits fall off."""

 print(a)

output\\ Shift left by pushing zeros in from the right

 and let the leftmost bits fall off.

3- Strings are Arrays

Like many other popular programming languages, strings in Python are arrays of

bytes representing unicode characters.

However, Python does not have a character data type, a single character is simply

a string with a length of 1.

Square brackets can be used to access elements of the string.

Example

Get the character at position 1 (remember that the first character has the position 0):

a = "Hello, World!"

print(a[1])

 output\\ e

4- String Length

To get the length of a string, use the len() function.

Example

The len() function returns the length of a string:

 a = "Hello, World!"

 print(len(a))

 output\\ 13

Computer Science Department

Python Programming Lecture 2

9

5- Python - Slicing Strings

You can return a range of characters by using the slice syntax. Specify the start

index and the end index, separated by a colon, to return a part of the string.

Example

Get the characters from position 2 to position 5 (not included):

 b = "Hello, World!"

 print(b[2:5])

 output\\ llo

Note: The first character has index 0.

1) Slice From the Start

By leaving out the start index, the range will start at the first character:

Example

Get the characters from the start to position 5 (not included):

 b = "Hello, World!"

 print(b[:5])

 output\\Hello

2) Slice To the End

By leaving out the end index, the range will go to the end:

Example

Get the characters from position 2, and all the way to the end:

b = "Hello, World!"

print(b[2:])

output\\ llo, World!

Computer Science Department

Python Programming Lecture 2

11

3) Negative Indexing

Use negative indexes to start the slice from the end of the string:

Example

Get the characters:

From: "o" in "World!" (position -5)

To, but not included: "d" in "World!" (position -2):

 b = "Hello, World!"
 print(b[-5:-2])

 output\\ orl

6- Looping Through a String:

Since strings are arrays, we can loop through the characters in a string, with

a for loop.

Example

for x in "banana":
 print(x)

output\\ b

 a

 n

 a

 n

 a

Computer Science Department

Python Programming Lecture 2

11

7- Check String:

To check if a certain phrase or character is present in a string, we can use the

keyword in.

Example

txt = "The best things in life are free!"
print("free" in txt)

output\\ True

Example

txt = "The best things in life are free!"

print("expensive" not in txt)

output\\ True

8- Python - Modify Strings:

Python has a set of built-in methods that you can use on strings.

1) Upper Case:

Example

The upper() method returns the string in upper case:

a = "Hello, World!"
print(a.upper())

output\\ HELLO, WORLD!

Computer Science Department

Python Programming Lecture 2

12

2) Lower Case:

Example

The lower() method returns the string in lower case:

a = "Hello, World!"
print(a.lower())

output\\ hello, world!

3) Replace String:

Example

The replace() method replaces a string with another string:

a = "Hello, World!"
print(a.replace("H", "J"))

output\\ Jello, World!

((End of lecture 2))

Computer Science Department

Python Programming Lecture 3

1

3.1 Python If ... Else

Python Conditions and If statements

Python supports the usual logical conditions from mathematics:

 Equals: a == b

 Not Equals: a != b

 Less than: a < b

 Less than or equal to: a <= b

 Greater than: a > b

 Greater than or equal to: a >= b

These conditions can be used in several ways, most commonly in "if statements"

and loops.

An " if statement " is written by using the if keyword.

Example

 a = 33

b = 200

if b > a:

 print("b is greater than a")

output\\ b is greater than a

In this example we use two variables, a and b, which are used as part of the if

statement to test whether b is greater than a. As a is 33, and b is 200, we know

that 200 is greater than 33, and so we print to screen that "b is greater than a".

Computer Science Department

Python Programming Lecture 3

2

1- Indentation

Python relies on indentation (whitespace at the beginning of a line) to define

scope in the code. Other programming languages often use curly-brackets for

this purpose.

Example

If statement, without indentation (will raise an error):

a = 33

b = 200

if b > a:

print("b is greater than a") # you will get an error

2- Elif

The elif keyword is pythons way of saying "if the previous conditions were not

true, then try this condition".

Example

a = 33

b = 33

if b > a:

 print("b is greater than a")

elif a == b:

 print("a and b are equal")

output\\ a and b are equal

In this example a is equal to b, so the first condition is not true, but

the elif condition is true, so we print to screen that "a and b are equal".

Computer Science Department

Python Programming Lecture 3

3

3- Else

The else keyword catches anything which isn't caught by the preceding

conditions.

Example

a = 200

b = 33

if b > a:

 print("b is greater than a")

elif a == b:

 print("a and b are equal")

else:

 print("a is greater than b")

output\\ a is greater than b

In this example a is greater than b, so the first condition is not true, also

the elif condition is not true, so we go to the else condition and print to screen

that "a is greater than b".

You can also have an else without the elif:

Example

a = 200

b = 33

if b > a:

 print("b is greater than a")

else:

 print("b is not greater than a")

output\\ b is not greater than a

Computer Science Department

Python Programming Lecture 3

4

H.w\\

a = 330

b = 330

print("A") if a > b else print("=") if a == b else print("B")

output\\

4- And

The and keyword is a logical operator, and is used to combine conditional

statements:

Example

Test if a is greater than b, AND if c is greater than a:

 a = 200

b = 33

c = 500

if a > b and c > a:

 print("Both conditions are True")

 output\\ Both conditions are True

5- Or

The or keyword is a logical operator, and is used to combine conditional

statements:

Example

Test if a is greater than b, OR if a is greater than c:

a = 200

b = 33

Computer Science Department

Python Programming Lecture 3

5

c = 500

if a > b or a > c:

 print("At least one of the conditions is True")

output\\ At least one of the conditions is True

6- Use in an if statement:

Example

Print only if "free" is present:

txt = "The best things in life are free!"

if "free" in txt:

 print("Yes, 'free' is present.")

output\\ Yes, 'free' is present

7- Check if NOT

To check if a certain phrase or character is NOT present in a string, we can use

the keyword not in.

Example

Check if "expensive" is NOT present in the following text:

txt = "The best things in life are free!"

print("expensive" not in txt)

output\\ True

Use it in an if statement:

Computer Science Department

Python Programming Lecture 3

6

Example

print only if "expensive" is NOT present:

txt = "The best things in life are free!"

if "expensive" not in txt:

 print("No, 'expensive' is NOT present.")

output\\ No, 'expensive' is NOT present.

8- Nested If

You can have if statements inside if statements, this is

called nested if statements.

Example

x = 41

if x > 10:

 print("Above ten,")

 if x > 20:

 print("and also above 20!")

 else:

 print("but not above 20.")

output\\ Above ten,

 and also above 20!

Computer Science Department

Python Programming Lecture 3

7

3.2 Python For Loops

A for loop is used for iterating over a sequence (that is either a list, a tuple, a

dictionary, a set, or a string).

This is less like the for keyword in other programming languages, and works

more like an iterator method as found in other object-orientated programming

languages.

With the for loop we can execute a set of statements, once for each item in a list,

tuple, set etc.

Example

Print each fruit in a fruit list:

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 print(x)

output\\ apple

 banana

 cherry

1- Looping Through a String

Since strings are arrays, we can loop through the characters in a string, with

a for loop.

Example

Loop through the letters in the word "banana":

Computer Science Department

Python Programming Lecture 3

8

for x in "banana":

 print(x)

output\\b

 a

 n

 a

 n

 a

2- The break Statement

With the break statement we can stop the loop before it has looped through all

the items:

Example

Exit the loop when x is "banana":

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 print(x)

 if x == "banana":

 break

output\\ apple

 banana

Example

Exit the loop when x is "banana", but this time the break comes before the print:

 fruits = ["apple", "banana", "cherry"]

for x in fruits:

 if x == "banana":

 break

 print(x)

output\\ apple

Computer Science Department

Python Programming Lecture 3

9

3- The continue Statement

With the continue statement we can stop the current iteration of the loop, and

continue with the next:

Example

Do not print banana:

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 if x == "banana":

 continue

 print(x)

output\\ apple

 cherry

4- The range() Function

To loop through a set of code a specified number of times, we can use

the range() function,

The range() function returns a sequence of numbers, starting from 0 by default,

and increments by 1 (by default), and ends at a specified number.

Example

Using the range() function:

for x in range(6):

 print(x)

Computer Science Department

Python Programming Lecture 3

11

output\\ 0

 1

 2

 3

 4

 5

Example

Using the start parameter:

for x in range(2, 6):

 print(x)

output\\ 2

 3

 4

 5

5- Nested Loops

A nested loop is a loop inside a loop.

The "inner loop" will be executed one time for each iteration of the "outer loop":

Example

Print each adjective for every fruit:

Computer Science Department

Python Programming Lecture 3

11

adj = ["red", "big", "tasty"]

fruits = ["apple", "banana", "cherry"]

for x in adj:

 for y in fruits:

 print(x, y)

output\\ red apple

 red banana

 red cherry

 big apple

 big banana

 big cherry

 tasty apple

 tasty banana

 tasty cherry

H.w\\ use for loop to print this figure in screen:

P

Py

Pyt

Pyth

Pytho

Python

Pytho

Pyth

Pyt

Py

p

Computer Science Department

Python Programming Lecture 3

12

3.3 Python While Loops

With the while loop we can execute

 a set of statements as long as a condition is true.

Example

Print i as long as i is less than 6:

i = 1
while i < 6:
 print(i)
 i += 1

output\\1

 2

 3

 4

 5

The while loop requires relevant variables to be ready, in this example we need

to define an indexing variable, i, which we set to 1.

1- The break Statement

With the break statement we can stop the loop even if the while condition is

true:

Example

Exit the loop when i is 3:

Computer Science Department

Python Programming Lecture 3

13

i = 1

while i < 6:

 print(i)

 if i == 3:

 break

 i += 1

output\\1

 2

 3

2- The continue Statement

With the continue statement we can stop the current iteration, and continue with

the next:

Example

Continue to the next iteration if i is 3:

i = 0

while i < 6:

 i += 1

 if i == 3:

 continue

 print(i)

output\\ 1

 2

 4

 5

 6

Computer Science Department

Python Programming Lecture 3

14

3- The else Statement

With the else statement we can run a block of code once when the condition no

longer is true:

Example

Print a message once the condition is false:

i = 1

while i < 6:

 print(i)

 i += 1

else:

 print("i is no longer less than 6")

output\\ 1

 2

 3

 4

 5

 i is no longer less than 6

H.w\\ how print the following output:

 6 * 1 = 6

 6 * 2 = 12

 6 * 3 = 18

 6 * 4 = 24

 6 * 5 = 30

((End of lecture 3))

Computer Science Department

Python Programming Lecture 4

1

4.1 Python Lists

mylist = ["apple", "banana", "cherry"]

1) List

Lists are used to store multiple items in a single variable.

Lists are one of 4 built-in data types in Python used to store collections of data, the

other 3 are Tuple, Set, and Dictionary, all with different qualities and usage.

Lists are created using square brackets:

Example

Create a List:

thislist = ["apple", "banana", "cherry"]

print(thislist)

output\\ ['apple', 'banana', 'cherry']

2) List Items

List items are ordered, changeable, and allow duplicate values.

List items are indexed, the first item has index [0], the second item has

index [1] etc.

3) Ordered

When we say that lists are ordered, it means that the items have a defined order,

and that order will not change.

If you add new items to a list, the new items will be placed at the end of the list.

https://www.w3schools.com/python/python_tuples.asp
https://www.w3schools.com/python/python_sets.asp
https://www.w3schools.com/python/python_dictionaries.asp

Computer Science Department

Python Programming Lecture 4

2

Note: There are some list methods that will change the order, but in general: the order of

the items will not change.

4) Changeable

The list is changeable, meaning that we can change, add, and remove items in a list

after it has been created.

5) Allow Duplicates

Since lists are indexed, lists can have items with the same value:

Example

thislist = ["apple", "banana", "cherry", "apple", "cherry"]

print(thislist)

output\\ ['apple', 'banana', 'cherry', 'apple', 'cherry']

6) List Length

To determine how many items a list has, use the len() function:

Example

thislist = ["apple", "banana", "cherry"]

print(len(thislist))

output\\ 3

https://www.w3schools.com/python/python_lists_methods.asp

Computer Science Department

Python Programming Lecture 4

3

7) List Items - Data Types

List items can be of any data type(String, int and boolean data types):

Example

list1 = ["apple", "banana", "cherry"]

list2 = [1, 5, 7, 9, 3]

list3 = [True, False, False]

A list can contain different data types:

Example

 list1 = ["abc", 34, True, 40, "male"]

8) Python - Access List Items

Access Items

List items are indexed and you can access them by referring to the index number:

Example

Print the second item of the list:

 thislist = ["apple", "banana", "cherry"]

 print(thislist[1])

 output\\ banana

Note: The first item has index 0.

9) Negative Indexing

Negative indexing means start from the end

-1 refers to the last item, -2 refers to the second last item etc.

Computer Science Department

Python Programming Lecture 4

4

Example

Print the last item of the list:

 thislist = ["apple", "banana", "cherry"]

 print(thislist[-1])

 output\\ cherry

10) Range of Indexes

You can specify a range of indexes by specifying where to start and where to end

the range. When specifying a range, the return value will be a new list with the

specified items.

Example

Return the third, fourth, and fifth item:

 thislist = ["apple", "banana", "cherry", "orange", "kiwi", "melon", "mango"]

 print(thislist[2:5])

output\\ ['cherry', 'orange', 'kiwi']

Note: The search will start at index 2 (included) and end at index 5 (not included).

Remember that the first item has index 0.

By leaving out the start value, the range will start at the first item:

Example

 thislist = ["apple", "banana", "cherry", "orange", "kiwi", "melon", "mango"]

 print(thislist[:4])

output\\ ['apple', 'banana', 'cherry', 'orange']

Computer Science Department

Python Programming Lecture 4

5

11) Python - Add List Items

Append Items

To add an item to the end of the list, use the append() method:

Example

 thislist = ["apple", "banana", "cherry"]

 thislist.append("orange")

 print(thislist)

output\\ ['apple', 'banana', 'cherry', 'orange']

12) Python - Remove List Items

Remove Specified Item

The remove() method removes the specified item.

Example

Remove "banana":

thislist = ["apple", "banana", "cherry"]

thislist.remove("banana")

print(thislist)

output\\ ['apple', 'cherry']

Remove Specified Index

The pop() method removes the specified index.

Example

Remove the second item:

 thislist = ["apple", "banana", "cherry"]

 thislist.pop(1)

 print(thislist)

output\\ ['apple', 'cherry']

Computer Science Department

Python Programming Lecture 4

6

13) Python - Loop Lists

Loop Through a List

You can loop through the list items by using a for loop:

Example

Print all items in the list, one by one:

thislist = ["apple", "banana", "cherry"]

for x in thislist:

 print(x)

output\\ apple

 banana

 cherry

14) Loop Through the Index Numbers

You can also loop through the list items by referring to their index number.

Use the range() and len() functions to create a suitable iterable.

Example

Print all items by referring to their index number:

 thislist = ["apple", "banana", "cherry"]

 for i in range(len(thislist)):

 print(thislist[i])

 output\\ apple

 banana

 cherry

Computer Science Department

Python Programming Lecture 4

7

15) Python - Sort Lists

Sort List Alphanumerically

List objects have a sort() method that will sort the list alphanumerically,

ascending, by default:

Example

Sort the list alphabetically:

thislist = ["orange", "mango", "kiwi", "pineapple", "banana"]

thislist.sort()

print(thislist)

output\\ ['banana', 'kiwi', 'mango', 'orange', 'pineapple']

Example

Sort the list numerically:

thislist = [100, 50, 65, 82, 23]

thislist.sort()

print(thislist)

output\\ [23, 50, 65, 82, 100]

Sort Descending

To sort descending, use the keyword argument reverse = True:

Example

Sort the list descending:

thislist = ["orange", "mango", "kiwi", "pineapple", "banana"]

thislist.sort(reverse = True)

print(thislist)

output\\ ['pineapple', 'orange', 'mango', 'kiwi', 'banana']

Computer Science Department

Python Programming Lecture 4

8

Example

Sort the list descending:

thislist = [100, 50, 65, 82, 23]

thislist.sort(reverse = True)

print(thislist)

output\\ [100, 82, 65, 50, 23]

16) Python - Join Lists

Join Two Lists

There are several ways to join, or concatenate, two or more lists in Python.

One of the easiest ways are by using the + operator.

Example

Join two list:

list1 = ["a", "b", "c"]

list2 = [1, 2, 3]

list3 = list1 + list2

print(list3)

output\\ ['a', 'b', 'c', 1, 2, 3]

Another way to join two lists is by appending all the items from list2 into list1, one

by one:

Example

Append list2 into list1:

list1 = ["a", "b" , "c"]

list2 = [1, 2, 3]

for x in list2:

 list1.append(x)

print(list1)

output\\ ['a', 'b', 'c', 1, 2, 3]

Computer Science Department

Python Programming Lecture 4

9

17) List Methods

Python has a set of built-in methods that you can use on lists.

Method Description

append() Adds an element at the end of the list

clear() Removes all the elements from the list

copy() Returns a copy of the list

count() Returns the number of elements with the specified value

extend() Add the elements of a list (or any iterable), to the end of the current list

index() Returns the index of the first element with the specified value

insert() Adds an element at the specified position

pop() Removes the element at the specified position

remove() Removes the item with the specified value

reverse() Reverses the order of the list

sort() Sorts the list

H.w\\ نفذ مجموعة امثلة عن الطرق أعلاه في المختبر

Computer Science Department

Python Programming Lecture 4

11

4.2 Python Tuples

mytuple = ("apple", "banana", "cherry")

Tuples are used to store multiple items in a single variable.

Tuple is one of 4 built-in data types in Python used to store collections of data, the

other 3 are List, Set, and Dictionary, all with different qualities and usage.

A tuple is a collection which is ordered and unchangeable.

Tuples are written with round brackets.

Example

1) Create a Tuple:

thistuple = ("apple", "banana", "cherry")

print(thistuple)

output\\ ('apple', 'banana', 'cherry')

2) Tuple Items - Data Types

Tuple items can be of any data type (String, int and boolean data types) :

Example

tuple1 = ("apple", "banana", "cherry")

tuple2 = (1, 5, 7, 9, 3)

tuple3 = (True, False, False)

A tuple can contain different data types:

Example

Different types of tuples

Empty tuple

my_tuple = ()

print(my_tuple)

https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_sets.asp
https://www.w3schools.com/python/python_dictionaries.asp

Computer Science Department

Python Programming Lecture 4

11

Tuple having integers

my_tuple = (1, 2, 3)

print(my_tuple)

tuple with mixed datatypes

my_tuple = (1, "Hello", 3.4)

print(my_tuple)

nested tuple

my_tuple = ("mouse", [8, 4, 6], (1, 2, 3))

print(my_tuple)

output\\ ()

 (1, 2, 3)

 (1, 'Hello', 3.4)

 ('mouse', [8, 4, 6], (1, 2, 3))

3) Python - Access Tuple Items

Like (list) ـنفس حالة ال

4) Add Items

Since tuples are immutable, they do not have a build-in append() method, but there

are other ways to add items to a tuple.

1. Convert into a list: Just like the workaround for changing a tuple, you can

convert it into a list, add your item(s), and convert it back into a tuple.

Example

Convert the tuple into a list, add "orange", and convert it back into a tuple:

thistuple = ("apple", "banana", "cherry")

y = list(thistuple)

y.append("orange")

thistuple = tuple(y)

output\\ H.W

Computer Science Department

Python Programming Lecture 4

12

2. Add tuple to a tuple. You are allowed to add tuples to tuples, so if you want to

add one item, (or many), create a new tuple with the item(s), and add it to the

existing tuple:

Example

Create a new tuple with the value "orange", and add that tuple:

thistuple = ("apple", "banana", "cherry")

y = ("orange",)

thistuple += y

print(thistuple)

output\\ ('apple', 'banana', 'cherry', 'orange')

5) Python - Loop Tuples

Like list.

6) Tuple Methods

Python has two built-in methods that you can use on tuples.

Method Description

count() Returns the number of times a specified value occurs in
a tuple

index() Searches the tuple for a specified value and returns the
position of where it was found

H.w\\ نفذ مجموعة امثلة عن الطرق أعلاه في المختبر

Computer Science Department

Python Programming Lecture 4

13

H.W\\ what’s the outputs of the following:

1- letters = ('p', 'r', 'o', 'g', 'r', 'a', 'm', 'i', 'z')

 print(letters[-1])

 print(letters[-3])

2- my_tuple = ('p', 'r', 'o', 'g', 'r', 'a', 'm', 'i', 'z')

 print(my_tuple[1:4])

 print(my_tuple[:-7])

 print(my_tuple[7:])

 print(my_tuple[:])

3- my_tuple = ('a', 'p', 'p', 'l', 'e',)

 print(my_tuple.count('p'))

 print(my_tuple.index('l'))

4- languages = ('Python', 'Swift', 'C++')

 print('C' in languages)

 print('Python' in languages)

5- var1 = ("hello")

 print(type(var1))

 var2 = ("hello",)

 print(type(var2))

 var3 = "hello",

 print(type(var3))

Computer Science Department

Python Programming Lecture 4

14

4.3 Advantages of Tuple over List in Python

Since tuples are quite similar to lists, both of them are used in similar situations.

However, there are certain advantages of implementing a tuple over a list:

1. We generally use tuples for heterogeneous (different) data types and lists for

homogeneous (similar) data types.

2. Since tuples are immutable, iterating through a tuple is faster than with a list.

So there is a slight performance boost.

3. Tuples that contain immutable elements can be used as a key for a

dictionary. With lists, this is not possible.

4. If you have data that doesn't change, implementing it as tuple will guarantee

that it remains write-protected.

((End of lecture 4))

Computer Science Department

Python Programming Lecture 5

1

5.1 Python Sets

myset = {"apple", "banana", "cherry"}

Sets are used to store multiple items in a single variable.

Set is one of 4 built-in data types in Python used to store collections of

data, the other 3 are List, Tuple, and Dictionary, all with different

qualities and usage.

A set is a collection which is unordered, unchangeable*, and unindexed.

* Note: Set items are unchangeable, but you can remove items and add new

items.

Sets are written with curly brackets.

Example

Create a Set:

thisset = {"apple", "banana", "cherry"}

print(thisset)

output\\{'banana', 'cherry', 'apple'}

Example

create a set of integer type

student_id = {112, 114, 116, 118, 115}

print('Student ID:', student_id)

create a set of string type

vowel_letters = {'a', 'e', 'i', 'o', 'u'}

https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_tuples.asp
https://www.w3schools.com/python/python_dictionaries.asp

Computer Science Department

Python Programming Lecture 5

2

print('Vowel Letters:', vowel_letters)

create a set of mixed data types

mixed_set = {'Hello', 101, -2, 'Bye'}

print('Set of mixed data types:', mixed_set)

outputs\\ Student ID: {112, 114, 115, 116, 118}

 Vowel Letters: {'i', 'u', 'o', 'a', 'e'}

 Set of mixed data types: {'Bye', 101, -2, 'Hello'}

1- Python - Access Set Items

You cannot access items in a set by referring to an index or a key.

But you can loop through the set items using a for loop, or ask if a

specified value is present in a set, by using the in keyword.

Example

Loop through the set, and print the values:

thisset = {"apple", "banana", "cherry"}

for x in thisset:

 print(x)

output\\ apple

 banana

 cherry

Example

Check if "banana" is present in the set:

thisset = {"apple", "banana", "cherry"}

print("banana" in thisset)

output\\ True

Computer Science Department

Python Programming Lecture 5

3

2- Python - Add Set Items

Once a set is created, you cannot change its items, but you can add new

items. To add one item to a set use the add() method.

Example

Add an item to a set, using the add() method:

 thisset = {"apple", "banana", "cherry"}

 thisset.add("orange")

 print(thisset)

 output\\ {'orange', 'banana', 'apple', 'cherry'}

Example

numbers = {21, 34, 54, 12}

print('Initial Set:',numbers)

using add() method

numbers.add(32)

print('Updated Set:', numbers)

output\\ Initial Set: {34, 12, 21, 54}

 Updated Set: {32, 34, 12, 21, 54}

Computer Science Department

Python Programming Lecture 5

4

3- Python - Remove Set Items

To remove an item in a set, use the remove(), or the discard() method.

Example

Remove "banana" by using the remove() method:

thisset = {"apple", "banana", "cherry"}

thisset.remove("banana")

print(thisset)

output\\ {'cherry', 'apple'}

Example

Remove "banana" by using the discard() method:

thisset = {"apple", "banana", "cherry"}

thisset.discard("banana")

print(thisset)

output\\ {'apple', 'cherry'}

Note: If the item to remove does not exist, discard() will NOT raise an error.

4- Python - Loop Sets

You can loop through the set items by using a for loop:

Example

Loop through the set, and print the values:

thisset = {"apple", "banana", "cherry"}

for x in thisset:

 print(x)

Computer Science Department

Python Programming Lecture 5

5

output\\ apple

 cherry

 banana

5- Python - Join Sets

Join Two Sets

There are several ways to join two or more sets in Python.

You can use the union() method that returns a new set containing all

items from both sets, or the update() method that inserts all the items

from one set into another:

Example

The union() method returns a new set with all items from both sets:

set1 = {"a", "b" , "c"}

set2 = {1, 2, 3}

set3 = set1.union(set2)

print(set3)

output\\ {1, 2, 3, 'a', 'c', 'b'}

Computer Science Department

Python Programming Lecture 5

6

6- Set Methods

Python has a set of built-in methods that you can use on sets.

Method Description

add() Adds an element to the set

clear() Removes all the elements from the set

copy() Returns a copy of the set

difference() Returns a set containing the difference between two
or more sets

difference_update() Removes the items in this set that are also included in
another, specified set

discard() Remove the specified item

intersection() Returns a set, that is the intersection of two other
sets

intersection_update() Removes the items in this set that are not present in
other, specified set(s)

isdisjoint() Returns whether two sets have a intersection or not

issubset() Returns whether another set contains this set or not

issuperset() Returns whether this set contains another set or not

Computer Science Department

Python Programming Lecture 5

7

pop() Removes an element from the set

remove() Removes the specified element

union() Return a set containing the union of sets

update() Update the set with the union of this set and others

H.w\\ أعلاهنفذ مجموعة من الأمثلة في المختبر عن الطرق

H.w\\

1- companies = {'Lacoste', 'Ralph Lauren'}

 tech_companies = ['apple', 'google', 'apple']

 companies.update(tech_companies)

 print(companies)

 Output\\

2- even_numbers = {2,4,6,8}

 print('Set:',even_numbers)

 # find number of elements

 print('Total Elements:', len(even_numbers))

 output\\

3- use the == operator to check whether two sets are equal or not.

 A = {1, 3, 5} , B = {3, 5, 1}

Computer Science Department

Python Programming Lecture 5

8

5.2 Python Dictionaries

 thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

Dictionaries are used to store data values in key:value pairs.

A dictionary is a collection which is ordered*, changeable and do not

allow duplicates.

As of Python version 3.7, dictionaries are ordered. In Python 3.6 and

earlier, dictionaries are unordered.

Dictionaries are written with curly brackets, and have keys and values:

Example

Create and print a dictionary:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

print(thisdict)

output\\ {'brand': 'Ford', 'model': 'Mustang', 'year': 1964}

1- Dictionary Items

Dictionary items are ordered, changeable, and does not allow duplicates.

Dictionary items are presented in key:value pairs, and can be referred to

by using the key name.

Computer Science Department

Python Programming Lecture 5

9

Example

Print the "brand" value of the dictionary:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

print(thisdict["brand"])

 output\\ Ford

2- python - Access Dictionary Items

You can access the items of a dictionary by referring to its key name,

inside square brackets:

Example

Get the value of the "model" key:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

x = thisdict["model"]

output\\ Mustang

Example

Add a new item to the original dictionary, and see that the keys list gets updated

as well:

car = {

"brand": "Ford",

"model": "Mustang",

"year": 1964

}

Computer Science Department

Python Programming Lecture 5

11

x = car.keys()

print(x) #before the change

car["color"] = "white"

print(x) #after the change

output\\ dict_keys(['brand', 'model', 'year'])

 dict_keys(['brand', 'model', 'year', 'color'])

3- Removing Items

There are several methods to remove items from a dictionary:

Example

The pop() method removes the item with the specified key name:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict.pop("model")

print(thisdict)

output\\ {'brand': 'Ford', 'year': 1964}

4- Python - Loop Dictionaries

Loop Through a Dictionary

You can loop through a dictionary by using a for loop.

When looping through a dictionary, the return value are the keys of the

dictionary, but there are methods to return the values as well.

Example

Print all key names in the dictionary, one by one:

Computer Science Department

Python Programming Lecture 5

11

thisdict ={

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

 for x in thisdict:

 print(x)

output\\brand

 model

 year

Example

Print all values in the dictionary, one by one:

thisdict ={

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

for x in thisdict:

 print(thisdict[x])

output\\ Ford

 Mustang

 1964

Computer Science Department

Python Programming Lecture 5

12

5- Dictionary Methods

Python has a set of built-in methods that you can use on dictionaries.

Method Description

clear() Removes all the elements from the dictionary

copy() Returns a copy of the dictionary

fromkeys() Returns a dictionary with the specified keys and value

get() Returns the value of the specified key

items() Returns a list containing a tuple for each key value pair

keys() Returns a list containing the dictionary's keys

pop() Removes the element with the specified key

popitem() Removes the last inserted key-value pair

setdefault() Returns the value of the specified key. If the key does not
exist: insert the key, with the specified value

update() Updates the dictionary with the specified key-value pairs

values() Returns a list of all the values in the dictionary

H.w\\ نفذ مجموعة من الأمثلة في المختبر عن الطرق أعلاه

Computer Science Department

Python Programming Lecture 5

13

H.W\\

1- # Membership Test for Dictionary Keys

 squares = {1: 1, 3: 9, 5: 25, 7: 49, 9: 81}

 print(1 in squares)

 print(2 not in squares)

 # membership tests for key only not value

 print(49 in squares)

 output\\

2- student_id = {111: "Eric", 112: "Kyle", 113: "Butters"}

 print("Initial Dictionary: ", student_id)

 student_id[112] = "Stan"

 print("Updated Dictionary: ", student_id)

 output\\

((End of lecture 5))

Computer Science Department

Python Programming Lecture 6

1

6.1 Python Functions

A function is a block of code which only runs when it is called.

You can pass data, known as parameters, into a function.

A function can return data as a result.

Types of function

There are two types of function in Python programming:

 Standard library functions - These are built-in functions in Python

that are available to use.

 User-defined functions - We can create our own functions based on

our requirements.

1- Creating a Function

In Python a function is defined using the def keyword:

The syntax to declare a function is:

def function_name(arguments):

 # function body

 return

Here,

 def - keyword used to declare a function

 function_name - any name given to the function

Computer Science Department

Python Programming Lecture 6

2

 arguments - any value passed to function

 return (optional) - returns value from a function

Example

def my_function():

 print("Hello from a function")

2- Calling a Function

To call a function, use the function name followed by parenthesis:

Example

def my_function():

 print("Hello from a function")

my_function()

output\\ Hello from a function

3- Arguments

Information can be passed into functions as arguments.

Arguments are specified after the function name, inside the parentheses. You

can add as many arguments as you want, just separate them with a comma.

The following example has a function with one argument (fname). When the function

is called, we pass along a first name, which is used inside the function to print the full

name:

Example

def my_function(fname):

 print(fname + " Refsnes")

my_function("Emil")

my_function("Tobias")

my_function("Linus")

Computer Science Department

Python Programming Lecture 6

3

Arguments are often shortened to args in Python documentations.

4- Parameters or Arguments?

The terms parameter and argument can be used for the same thing:

information that are passed into a function.

From a function's perspective:

A parameter is the variable listed inside the parentheses in the function definition.

An argument is the value that is sent to the function when it is called.

5- Number of Arguments

By default, a function must be called with the correct number of arguments.

Meaning that if your function expects 2 arguments, you have to call the

function with 2 arguments, not more, and not less.

Example

This function expects 2 arguments, and gets 2 arguments:

def my_function(fname, lname):

 print(fname + " " + lname)

my_function("Emil", "Refsnes")

output\\ Emil Refsnes

As mentioned earlier, a function can also have arguments. An argument is a

value that is accepted by a function. For example,

Example
function with two arguments

def add_numbers(num1, num2):

Computer Science Department

Python Programming Lecture 6

4

 sum = num1 + num2

 print('Sum: ',sum)

function with no argument

def add_numbers():

If we create a function with arguments, we need to pass the corresponding

values while calling them. For example,

Example

function call with two values

add_numbers(5, 4)

function call with no value

add_numbers()

Here, add_numbers(5, 4) specifies that arguments num1 and num2 will get

values 5 and 4 respectively.

Example

def add_numbers(num1, num2):

 sum = num1 + num2

 print("Sum: ",sum)

 add_numbers(5, 4)

 Output\\ Sum: 9

Computer Science Department

Python Programming Lecture 6

5

6- Passing a List as an Argument

You can send any data types of argument to a function (string, number, list,

dictionary etc.), and it will be treated as the same data type inside the

function.

E.g. if you send a List as an argument, it will still be a List when it reaches the

function:

Example

def my_function(food):

 for x in food:

 print(x)

fruits = ["apple", "banana", "cherry"]

my_function(fruits)

output\\ apple

 banana

 cherry

7- Return Values

A Python function may or may not return a value. If we want our function to

return some value to a function call, we use the return statement. For example,

Example

 def my_function(x):

 return 5 * x

print(my_function(3))

print(my_function(5))

print(my_function(9))

Computer Science Department

Python Programming Lecture 6

6

output\\ 15

 25

 45

Note: The return statement also denotes that the function has ended. Any

code after return is not executed.

Example

def find_square(num):

 result = num * num

 return result

function call

square = find_square(3)

print('Square:',square)

Output\\ Square: 9

Example

function that adds two numbers

def add_numbers(num1, num2):

 sum = num1 + num2

 return sum

calling function with two values

result = add_numbers(5, 4)

print('Sum: ', result)

Output\\ Sum: 9

Computer Science Department

Python Programming Lecture 6

7

8- Python Variable Scope

In Python, we can declare variables in three different scopes: local scope,

global, and nonlocal scope. A variable scope specifies the region where we

can access a variable. For example,

def add_numbers():

 sum = 5 + 4

Here, the sum variable is created inside the function, so it can only be

accessed within it (local scope). This type of variable is called a local

variable.

Based on the scope, we can classify Python variables into three types:

1. Local Variables

2. Global Variables

3. Nonlocal Variables

1- Local Scope

A variable created inside a function belongs to the local scope of that

function, and can only be used inside that function.

Example

A variable created inside a function is available inside that function:

def myfunc():

 x = 300

 print(x)

myfunc()

output\\ 300

Computer Science Department

Python Programming Lecture 6

8

Example

def greet():

 message = 'Hello'

 print('Local', message)

greet()

try to access message variable

outside greet() function

print(message)

Output\\ Local Hello

 NameError: name 'message' is not defined

2- Global Scope

A variable created in the main body of the Python code is a global variable

and belongs to the global scope.

Global variables are available from within any scope, global and local.

Example

declare global variable

message = 'Hello'

def greet():

 print('Local', message)

greet()

print('Global', message)

Output\\Local Hello

 Global Hello

Computer Science Department

Python Programming Lecture 6

9

This time we can access the message variable from outside of

the greet() function.

This is because we have created the message variable as the global variable.

Example

A variable created outside of a function is global and can be used by anyone:

x = 300

def myfunc():

 print(x)

myfunc()

print(x)

output\ 300

 300

Example

The function will print the local x, and then the code will print the global x:

x = 300

def myfunc():

 x = 200

 print(x)

myfunc()

print(x)

output\\ 200

 300

Computer Science Department

Python Programming Lecture 6

11

Example

To change the value of a global variable inside a function, refer to the variable by

using the global keyword:

x = 300

def myfunc():

 global x

 x = 200

myfunc()

print(x)

output\\ 200

3- Python Nonlocal Variables

In Python, nonlocal variables are used in nested functions whose local scope

is not defined. This means that the variable can be neither in the local nor the

global scope.

We use the nonlocal keyword to create nonlocal variables.For example,

Example

outside function

def outer():

 message = 'local'

 # nested function

 def inner():

 # declare nonlocal variable

 nonlocal message

 message = 'nonlocal'

Computer Science Department

Python Programming Lecture 6

11

 print("inner:", message)

 inner()

 print("outer:", message)

outer()

Output\\inner: nonlocal

 outer: nonlocal

In the above example, there is a nested inner() function. We have used

the nonlocal keywords to create a nonlocal variable.

6.2 Python Library Functions

In Python, standard library functions are the built-in functions that can be used

directly in our program. For example,

 print() - prints the string inside the quotation marks

 sqrt() - returns the square root of a number

 pow() - returns the power of a number

These library functions are defined inside the module. And, to use them we must

include the module inside our program.

For example, sqrt() is defined inside the math module.

Example

import math

sqrt computes the square root

square_root = math.sqrt(4)

Computer Science Department

Python Programming Lecture 6

12

print("Square Root of 4 is",square_root)

pow() comptes the power

power = pow(2, 3)

print("2 to the power 3 is",power)

Output\\ Square Root of 4 is 2.0

 2 to the power 3 is 8

In the above example, we have used

 math.sqrt(4) - to compute the square root of 4

 pow(2, 3) - computes the power of a number i.e. 2
3

Here, notice the statement,

import math

Since sqrt() is defined inside the math module, we need to include it in our

program.

Computer Science Department

Python Programming Lecture 6

13

6.3 Benefits of Using Functions

1. Code Reusable - We can use the same function multiple times in our program

which makes our code reusable. For example,

Example

function definition

def get_square(num):

 return num * num

for i in [1,2,3]:

 # function call

 result = get_square(i)

 print('Square of',i, '=',result)

Output\\Square of 1 = 1

 Square of 2 = 4

 Square of 3 = 9

In the above example, we have created the function named get_square() to

calculate the square of a number. Here, the function is used to calculate the

square of numbers from 1 to 3.

Hence, the same method is used again and again.

2. Code Readability - Functions help us break our code into chunks to make our

program readable and easy to understand.

Computer Science Department

Python Programming Lecture 6

14

H.W\\

1- Define a function that accepts 2 values and return its sum, subtraction and

multiplication.

2- Define a function that accepts roll number and returns whether the student is present

or absent.

3-Define a function in python that accepts 3 values and returns the maximum of three

numbers.

4-Define a function that accepts a number and returns whether the number is even or

odd.

5-Define a function that returns Factorial of a number.

6-Define a function that accepts lowercase words and returns uppercase words.

7-Define a function that accepts radius and returns the area of a circle.

8-Write a Python function to find the maximum of three numbers

9-Write a Python function to sum all the numbers in a list.

10-Write a Python program to reverse a string.

11-Write a Python program to print the even numbers from a given list.

12- Write a Python function that accepts different values as parameters and returns a

list.

13- Write a Python function that returns a dictionary.

14- Write a Python function that returns a tuple.

15- Write a Python function that returns the following:

 5

 4

 3

 2

 1

 stop

((End of lecture 6))

Computer Science Department

Python Programming Lecture 7

1

7.1 Python Classes and Object

Python is an object oriented programming language.

Almost everything in Python is an object, with its properties and

methods. A Class is like an object constructor, or a "blueprint" for

creating objects.

1- Create a Class

To create a class, use the keyword class:

Example

Create a class named MyClass, with a property named x and function named

increment :

class MyClass:

 name='ali'

 age = 30 #variable

 def myfunc (self): # function

 print(self.name, self.age)

Computer Science Department

Python Programming Lecture 7

2

2- Create Object

Now we can use the class named MyClass to create objects:

Example

Create an object named p1, and print the value of x:

 p1 = MyClass()

 print (p1.name,p1.age)

 p1.myfunc ()

 objectيقصد به اسم selfوهنا الدالةاستدعاء

class MyClass:

 def increment (self, name,age):

 self. name =name

 self.age=age

 print (self name,self.age)

 p1 = MyClass()

 p1.increment ('ALI', 20)

Computer Science Department

Python Programming Lecture 7

3

class MyClass:

 def myfunc (self):

 self.name = 'ALI'

 self.age =30

 print (self.name, self.age)

 p1 = MyClass()

 p1. myfunc t()

3- The __init__() Function

The examples above are classes and objects in their simplest form, and

are not really useful in real life applications.

To understand the meaning of classes we have to understand the built-in

__init__() function.

All classes have a function called __init__(), which is always executed

when the class is being initiated.

Use the __init__() function to assign values to object properties, or other

operations that are necessary to do when the object is being created:

Example

Create a class named Person, use the __init__() function to assign values for

name and age:

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

p1 = Person("John", 36)

print(p1.name)

print(p1.age)

Computer Science Department

Python Programming Lecture 7

4

Note: The __init__() function is called automatically every time the

class is being used to create a new object.

Example

Insert a function that prints a greeting, and execute it on the p1 object:

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def myfunc(self):

 print("Hello my name is " + self.name)

p1 = Person("John", 36)

p1.myfunc()

7.2 Python Inheritance:

Inheritance allows us to define a class that inherits all the methods and

properties from another class.

Parent class is the class being inherited from, also called base class.

Child class is the class that inherits from another class, also called

derived class.

Computer Science Department

Python Programming Lecture 7

5

1- Create a Parent Class

Any class can be a parent class, so the syntax is the same as creating any

other class:

Example

Create a class named Person, with firstname and lastname properties, and

a printname method:

class Person:

 def __init__(self, fname, lname):

 self.firstname = fname

 self.lastname = lname

 def printname(self):

 print(self.firstname, self.lastname)

#Use the Person class to create an object, and then execute the printname

method:

x = Person("John", "Doe")

x.printname()

2- Create a Child Class

To create a class that inherits the functionality from another class, send

the parent class as a parameter when creating the child class:

Example

Create a class named Student, which will inherit the properties and methods

from the Person class:

Computer Science Department

Python Programming Lecture 7

6

class Student(Person):

 pass

Note: Use the pass keyword when you do not want to add any other properties

or methods to the class.

Now the Student class has the same properties and methods as the Person

class.

Example

Use the Student class to create an object, and then execute

the printname method:

x = Student("Mike", "Olsen")

x.printname()

 Uses of Inheritance

1. Since a child class can inherit all the functionalities of the parent's class, this

allows code reusability.

2. Once a functionality is developed, you can simply inherit it. No need to

reinvent the wheel. This allows for cleaner code and easier to maintain.

3. Since you can also add your own functionalities in the child class, you can

inherit only the useful functionalities and define other required features.

Computer Science Department

Python Programming Lecture 7

7

3- Add the __init__() Function

So far we have created a child class that inherits the properties and

methods from its parent.

We want to add the __init__() function to the child class (instead of

the pass keyword).

Note: The __init__() function is called automatically every time the class is being

used to create a new object.

Example

Add the __init__() function to the Student class:

class Student(Person):

 def __init__(self, fname, lname):

 #add properties etc.

When you add the __init__() function, the child class will no longer inherit

the parent's __init__() function.

Note: The child's __init__() function overrides the inheritance of the

parent's __init__() function.

To keep the inheritance of the parent's __init__() function, add a call to the

parent's __init__() function:

Example

class Student(Person):

 def __init__(self, fname, lname):

 Person.__init__(self, fname, lname)

Now we have successfully added the __init__() function, and kept the inheritance

of the parent class, and we are ready to add functionality in

the __init__() function.

Computer Science Department

Python Programming Lecture 7

8

4- Use the super() Function

Python also has a super() function that will make the child class inherit all

the methods and properties from its parent:

Example

class Student(Person):

 def __init__(self, fname, lname):

 super().__init__(fname, lname)

By using the super() function, you do not have to use the name of the

parent element, it will automatically inherit the methods and properties

from its parent.

 Add Properties

Example

Add a property called graduationyear to the Student class:

class Student(Person):

 def __init__(self, fname, lname):

 super().__init__(fname, lname)

 self.graduationyear = 2019

In the example below, the year 2019 should be a variable, and passed into

the Student class when creating student objects. To do so, add another

parameter in the __init__() function:

Computer Science Department

Python Programming Lecture 7

9

Example

Add a year parameter, and pass the correct year when creating objects:

class Student(Person):

 def __init__(self, fname, lname, year):

 super().__init__(fname, lname)

 self.graduationyear = year

x = Student("Mike", "Olsen", 2019)

 Add Methods

Example

Add a method called welcome to the Student class:

class Student(Person):

 def __init__(self, fname, lname, year):

 super().__init__(fname, lname)

 self.graduationyear = year

 def welcome(self):

 print("Welcome", self.firstname, self.lastname, "to the class of",

self.graduationyear)

If you add a method in the child class with the same name as a function

in the parent class, the inheritance of the parent method will be

overridden.

Computer Science Department

Python Programming Lecture 7

11

H.W\\

1) Can create multiple objects from a single class? Answer with example.

2) Write a Python program to create a class representing a Circle. Include

methods to calculate its area and perimeter.

3) Write a Python program to create a person class. Include attributes like

name, country and date of birth. Implement a method to determine the

person's age.

4) Write a Python program to create a calculator class. Include methods for

basic arithmetic operations.

5) Write a Python program to create a class that represents a shape. Include

methods to calculate its area and perimeter. Implement subclasses for

different shapes like circle, triangle, and square.

6) Write a Python program to create a class representing a shopping cart.

Include methods for adding and removing items, and calculating the total

price.

((End of lecture 7))

